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Abstract
A two-lane extension of a recently proposed cellular automaton model for
traffic flow is discussed. The analysis focuses on the reproduction of the lane
usage inversion and the density dependence of the number of lane changes.
It is shown that the single-lane dynamics can be extended to the two-lane
case without changing the basic properties of the model, which are known
to be in good agreement with empirical single-vehicle data. Therefore it is
possible to reproduce various empirically observed two-lane phenomena, like
the synchronization of the lanes, without fine tuning of the model parameters.

PACS numbers: 45.70.−n, 02.50.−r, 05.60.−k, 05.65.+b

1. Introduction

In [1] a cellular automaton model for traffic flow is proposed that is based on the Nagel and
Schreckenberg (NaSch) model [2] and which is capable of reproducing all of the empirically
observed traffic states [3, 4], i.e. free flow, wide moving jams and especially synchronized
traffic (see [5,6] for recent reviews on the modelling of traffic flow). Moreover, the agreement
of the model with empirical data can be found even on a microscopic level of description.
In [7] this degree of realism is underscored by considering a more realistic simulation set-up,
i.e. a simulation of a two-lane highway segment with an on-ramp. Empirical observations
suggest [4,8] that lane changes are responsible for the occurrence of strong correlations of the
velocity and flow measurements between neighbouring lanes in the synchronized states and in
wide moving jams. However, it was concluded [7] that lane changes only select, rather than
generate, traffic states.

Although the results of [7] do not depend on the special choice of the lane change update,
the application of the model to more sophisticated topologies should be provided with realistic
lane changing rules.
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Much progress has been made in the simulation of large traffic networks such as the
inner city of Duisburg [9], the Dallas/Fort Worth area [10] and the highway network of North-
Rhine-Westfalia [11]. These simulations were based on the NaSch model and use a detailed
representation of the systems infrastructure such as multi-lane traffic, on- and off-ramps and
highway intersections. However, a realistic microscopic description of the dynamics of each
individual vehicle in a network requires one to take into account the peculiarities of the complex
road structures. It is therefore necessary to formulate simple rules in the language of cellular
automata which mimic the behaviour of the drivers as simply as possible and to yield reasonable
results compared with empirical findings. Unfortunately it turned out that the incorporation of
two-lane traffic, even in the NaSch model, is a formidable task and the formulation of realistic
lane changing rules is very difficult.

Only a few empirical results for two-lane traffic exist which help to specify lane changing
rules [12–15]. The ability to change lanes should increase with density, shows a maximum
in the vicinity of the flow maximum and then decreases with increasing density [12].
Nevertheless, lane changes are still possible at large densities. A special feature of German
highway traffic is the empirically observed lane usage inversion. Although there is a right-lane
preference, the distribution of the flow becomes asymmetric and the flow is larger for the
left than for the right lane [12, 16]. In contrast, in urban traffic or on highways without the
right-lane constraints the traffic flow is evenly distributed over both lanes [13–15].

Several two-lane extensions [17–22] of the NaSch model were proposed which are able
to reproduce the empirically observed lane usage inversion. However, they fail to model a
realistic density dependence of the number of lane changes. Moreover, it was shown that some
problems of the cellular automaton approach exist if one introduces different kinds of vehicles,
but these shortcomings can be minimized by the consideration of anticipation effects [23].

Here, we extend the recently introduced traffic model [1] to two-lane traffic and answer
the question of which mechanism gives rise to the empirically observed lane usage inversion.
It is clarified that this extension can be made without changing the basic realistic properties
of the single-lane model. Moreover, it is demonstrated that lane changes do lead to strong
correlations between neighbouring lanes.

The simulations are (if not stated otherwise) performed on a highway of length 50 000
cells with periodic boundary conditions. In addition to the local measurements of [1], traffic
data are also recorded by averaging over the whole highway segment. This allows us, in
particular, to observe lane changes which cannot be measured by local detectors. The averaging
process, however, does not distinguish between the various traffic states on different parts of
the highway [8].

In the next section we briefly summarize the definition of the single-lane model and present
a simple two-lane extension. Because it is not possible to generate a lane usage inversion by the
introduction of different kinds of cars, we present in section 3 an asymmetric lane changing rule
set. In section 4 we show that the vehicle dynamics of the single-lane model is not influenced
by the lane changes, but the car dynamics is determined by the single-lane update rules only.
The advantages of two-lane traffic in comparison to single-lane traffic become obvious in
section 5. Finally, we conclude with section 6.

2. Symmetric model

Before we present our lane changing rule set, we briefly define the single-lane model (see [1]
for a detailed explanation). The model used here is based on the NaSch cellular automaton
model for traffic flow [2]. The road is divided into cells and a vehicle has a length of five cells.
The movement of the vehicles is determined by a set of simple update rules and the system
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Table 1. Summary of the variables and parameters used in the model definition.

Variable Parameter

x Position gapsafety Controls the effectiveness of the anticipation
v Velocity vmax Maximum velocity
vanti Anticipated velocity pb Deceleration probability
d Distance headway p0 Deceleration probability
deff Effective distance headway pd Deceleration probability
b Status of the brake light th Time headway
p Deceleration probability ts Safety time headway

update is performed in parallel. The model of [1] is based on the desire of the drivers for
smooth and comfortable driving, whereas the dynamics of the NaSch model only ensures the
avoidance of crashes. This more sophisticated behaviour is incorporated in a driving strategy
which comprises three aspects:

(i) At large distances the movement of a vehicle is determined by the maximum possible
velocity. Vehicles at rest have a smaller acceleration capability than moving vehicles.
Additionally, the velocity of the leading car is anticipated, which allows for smaller gaps
and larger velocities.

(ii) At intermediate distances vehicles anticipate last minute braking by means of brake lights.
(iii) At small distances the drivers adjust their velocity such that safe driving is possible.

Introducing the randomization function

p(vn(t), bn+1(t), th, ts) =




pb if bn+1 = 1 and th < ts

p0 if vn = 0 and not (bn+1 = 1 and th < ts)

pd in all other cases

and the effective distance

deff
n = dn + max(vanti − gapsafety, 0),

where dn is the gap of vehicle n, vanti = min(dn+1, vn+1) is the expected velocity of the preceding
vehicle in the next time step and gapsafety controls the effectiveness of the anticipation, the
update rules consist of the following 5 steps (see table 1 for a summary of the parameters and
variables of the model):

(0) Determination of the randomization parameter p.
p = p(vn(t), bn+1(t), th, ts)

bn(t + 1) = 0.

(1) Acceleration.
if ((bn+1(t) = 0) and (bn(t) = 0)) or (th � ts) then:

vn(t + 1) = min(vn(t) + 1, vmax).

(2) Braking rule.
vn(t + 1) = min(d(eff)

n , vn(t))

if (vn(t + 1) < vn(t)) then: bn(t + 1) = 1.

(3) Randomization and braking.
if (rand() < p) then:

vn(t + 1) = max(vn(t + 1) − 1, 0)

if (p = pb) then: bn(t + 1) = 1.

(4) Car motion.
xn(t + 1) = xn(t) + vn(t + 1).
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Step 0 determines the value of the randomization parameter p which depends on the
status of the ‘brake light’ bn (on/off) and the velocity vn of the nth car. (Cars are numbered
in the driving direction, i.e. vehicle n + 1 precedes vehicle n. In the case of two-lane traffic
this numbering is applied to each single lane separately. Thus, cars are relabelled after lane
changes.) In the next three steps the velocity vn of vehicle n is calculated. A car accelerates
if its own brake light and that of the leading car is switched off. If the time headway th to
the next car is large enough the car tries to approach the desired velocity in any case. The
braking rule ensures safe driving—the velocity is adapted to the effective distance d(eff)

n to
the leading vehicle. The effective distance is used instead of the real spatial distance dn to
the leading vehicle. If the velocity is reduced the brake light is switched on. The next step
introduces the stochastic element into the model, i.e. the velocity is reduced with probability
p(vn(t), bn+1, th, ts) as determined in step 0. Please note that the implementation also allows
for the propagation of the brake lights. In the final step the positions of the vehicles are updated
and the status of the brake light is reset. The two times th = dn/vn(t) and ts = min(vn(t), h),
where h determines the range of interaction with the brake light, are introduced to compare
the time th needed to reach the position of the leading vehicle with a velocity-dependent
(temporal) interaction horizon ts . Realistic behaviour is observed for the model parameters
vmax = 20, pd = 0.1, pb = 0.94, p0 = 0.5, h = 6 and gapsafety = 7 which have been used
in the simulations. The cell length is 1.5 m and a car has a length of 5 cells [1]. A time step
corresponds to 1 s in reality. Note that no fine-tuning of the parameters is necessary and the
model is quite robust against changes of the parameter values.

In order to extend the model to two-lane traffic one has to introduce lane changing rules.
A lane changing rule set should

(i) consist of simple, local rules,
(ii) be robust regarding slow vehicles, i.e. the flow should not be dominated by the introduction

of a small fraction of slow vehicles,
(iii) reproduce empirical lane changing curves,
(iv) show the empirically observed lane usage inversion (in the asymmetric case), and
(v) should not change the dynamical behaviour of the single-lane system.

In general, lane changing rules can be symmetric or asymmetric with respect to the lanes
or to the cars. While symmetric rules treat both lanes equally (see, for example, urban traffic
or highway traffic in the USA), asymmetric rule sets especially have to be applied for the
simulation of German highways, where lane changes are dominated by a right-lane preference
and a right-lane overtaking ban. Moreover, an asymmetry between, for example, cars and
trucks is provided on a two-lane highway since trucks are not allowed to change into the left
lane.

In principle, all lane changing rule sets of cellular automaton models for traffic flow are
formulated analogously [5,18]. First, a vehicle needs an incentive to change a lane. Second, a
lane change is only possible if some safety constraints are fulfilled. Asymmetry is introduced
if one applies different criteria for the change from left to right and right to left.

A system update is performed in two sub-steps. In the first step the cars change lanes
according to the lane changing rules and do not move. In the second step, the cars move
according to the calculated velocity. Both sub-steps are performed in parallel for all vehicles.

As a first step towards a realistic two-lane model for highway traffic we studied symmetric
lane changing rules with identical rule sets for the change from the left to the right and the
right to the left lane. The lane changing strategy comprises two aspects. First, the interaction
of a vehicle with its predecessor in its lane should be minimized for safety or just for comfort
reasons. Thus, a vehicle can optimize its travel time by driving as fast as possible due to
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Figure 1. Sketch of a road segment and illustration of the quantities relevant for the lane changing
rules. The hatched cells are occupied by a vehicle.

an optimal gap usage. In order to keep the model as simple as possible we restrict the lane
interaction to vehicles which have to brake in the next time step due to an insufficient gap
in front. Vehicles which had to brake (i.e. their brake light is activated) are not allowed to
change lane. Second, safety reasons or constraints by law require the minimization of the
interaction of a lane changing vehicle with its predecessor as well as with its successor on the
destination lane. Thus, a vehicle is allowed to change lane only if the gap between successor
and predecessor in the destination lane is sufficient. In order to increase the efficiency of the
lane changes, the movement of the preceding vehicle in the destination lane is anticipated.

The lane changing rules are then as follows:

(i) Incentive criterion:

(bn = 0) and (v(t) > d)

(ii) Safety criterion:

(d
(eff)
pred � v(t)) and (dsucc � vsucc)

where v(t) and d are the velocity and the gap of the vehicle, dsucc and vsucc are the gap to the
succeeding vehicle on the destination lane and its velocity, respectively. dpred denotes the gap
and d

(eff)
pred = dpred + max(v(anti) − gapsafety, 0) denotes the effective gap to the preceding vehicle

on the destination lane (where v(anti) = min(gap, vpred) is the expected velocity of the leading
vehicle on the destination lane in the next time step and gap and vpred is the gap and velocity of
the predecessor on the destination lane) (see figure 1). The effectiveness of the anticipation is
controlled by the parameter gapsafety. Accidents are avoided only if the constraint gapsafety � 1
is fulfilled. The same value for gapsafety as in the single-lane model is applied.

The symmetry of the lane changing update rules is reflected in the fundamental diagram4

(figure 2): both lanes show the same flow density relationship, in particular they have the
same maximum flow Jmax at the same density ρmax. Nevertheless, there is a strong exchange
of vehicles between the lanes. Although the empirical lane change curve [12] was taken
from measurements on German highways, where asymmetric rules have to be applied, it is
quite well reproduced on a qualitative level by simulations of the symmetric model, while on
a quantitative level the number of lane changes is too large (figure 3). A detailed analysis
reveals that, at small densities, about 50% of the lane changes are ping-pong changes [17].
Since anticipation is only applied in step 2 of the lane changing update, once a vehicle with an
effective gap changed lane the condition v > d of step 1 is always fulfilled. As a consequence,
the vehicle changes lane again.

If we drop the single-lane model extensions (slow-to-start rule, anticipation, brake lights)
successively, the lane change curve changes drastically (figure 4). The original NaSch model,

4 Note that the kink in the fundamental diagram is an artefact of the global measurement process: since it cannot
distinguish between the various traffic states on different highway sections, one simply averages over free flow and
synchronized states.
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Figure 2. Fundamental diagram of the individual lanes in the symmetric model.
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Figure 3. Number of lane changes per lane in the symmetric model.

as well as the NaSch model with velocity-dependent randomization where a slow-to-start rule is
applied (VDR model [24]), show a maximum in the lane change number at large densities, but
not at ρmax [12]. Additionally, the number of lane changes is reduced considerably compared
to the full model (figure 3). However, the introduction of brake lights or anticipation shifts the
maximum of the curve to ρmax. On the one hand, anticipation increases the effectiveness of
the lane changes because the gap acceptance is increased. Moreover, since groups of vehicles
with a gap smaller than the velocity exist, the first lane change rule is often fulfilled leading
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Figure 4. Lane changes of successive extensions of the symmetric two-lane NaSch model.

to an artificial enhancement of the lane changing probability. On the other hand, brake lights
show timely the breakdowns of the downstream traffic, so that vehicles are able to swerve into
the other lane in order to avoid abrupt braking. Thus, from a microscopic point of view only
the introduction of brake lights is responsible for the realistic lane changing behaviour.

The symmetry of the lane changing rules is responsible for the even distribution of the
density on both lanes. In contrast, lane usage inversion was observed on German highways
where the left lane is designated as the passing lane and the lane changing behaviour is
determined by the right-lane preference and the right-lane overtaking ban.

In order to implement an artificial asymmetry we introduced disorder by considering
different types of vehicles, such as cars and trucks. Unfortunately, the introduction of disorder
in cellular automaton models for two-lane traffic has some shortcomings: it is possible that
two slow vehicles driving side by side on different lanes can form a plug which blocks the
succeeding traffic [23, 25]. These plugs are very stable in the free flow regime and their
dissolution is determined by velocity fluctuations. As a result, the lifetime of the plugs is
very large and the flow is dominated by the slowest vehicle. In the NaSch model without
anticipation, even one slow car can dominate the flow. Anticipation reduces the formation
of plugs considerably [23], but they still seem to be slightly overestimated by the model. To
avoid the formation of plugs all trucks are therefore initialized in the right lane only and are
not allowed to change lane.

Suppose that 10% of the vehicles are trucks with vtrucks
max = 15 = 81 km h−1. As a result of

the asymmetric vehicle distribution the flow in the right lane is dominated by trucks, while the
flow in the left lane is comparable to the flow of the homogeneous model (figure 5). Obviously,
the introduction of trucks does not allow the reproduction of the lane usage inversion (figure 6):
the flow in the left lane is larger than in the right lane for all densities since fast vehicles avoid
driving in the right lane.

However, since one value of the total flow can be related to either free flow or congested
traffic, lane usage is not a unique function of the total flow. In contrast, lane usage depending
on the density gives unique results over the whole density regime. Therefore, the lane usage
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Figure 5. Fundamental diagram of the individual lanes of the symmetric model with 10% trucks.
Note that the trucks are not allowed to change to the left lane.

Figure 6. Lane usage of the symmetric model with 10% trucks as a function of the flow (left) and
the density (right). Note that the trucks are not allowed to change to the left lane.

curve described by the density is used in the further analysis since, as an advantage, density can
be calculated explicitly in the simulations. Moreover, a comparison of both methods shows
that the lane usage inversion point has the same flow-density value.

Due to the trucks in the right lane, at small densities nearly all fast cars are in the left lane.
With increasing density the velocity differences between the cars and the trucks decrease so
that both lanes are evenly occupied (figure 6). In contrast to the empirically observed lane



A realistic two-lane traffic model for highway traffic 3377

usage inversion, neither most of the cars are in the right lane at small densities, nor most of
the cars are in the left lane at large densities. In order to obtain the lane usage inversion, it is
therefore necessary to incorporate an asymmetry into the lane changing rules5.

On German highways two mechanisms lead to an asymmetry between the lanes:

(i) The right-lane preference is enforced by legal regulation to use the right lane as often as
possible.

(ii) The right-lane overtaking ban prohibits a car driving in the right lane to overtake a car
which is driving in the left lane.

In order to clarify which of these two mechanisms is responsible for the lane usage
inversion, we first focus on the right-lane overtaking ban. Therefore, lane changes to the
left lane are forced in the sense that a car in the right lane has to change to the left lane in
the case when its velocity is larger than its gap to the predecessor on the destination lane. In
addition to that, the safety criterion is weakened, so that cars even with v > d

(eff)
pred are allowed

to change lane. However, the overtaking ban is not formulated in a strict sense since vehicles
are allowed to overtake a car driving in the left lane if a lane change is not possible. As a result,
most of the cars are in the left lane for all densities. With increasing density this difference in
lane usage decreases, but nevertheless it is not possible to observe a lane usage inversion.

Second, we focus on the right-lane preference and force changes from left to right.
Obviously, the right-lane preference alone is not sufficient for the correct description of the
lane usage inversion, because cars now are predominantly in the right lane rather than in the
left lane.

To summarize, it is not possible to get a lane usage inversion either by implementing
disorder in the symmetric model, such as using different types of cars, or by introducing either
right-lane preference or the right-lane overtaking ban on its own. One therefore has to introduce
the right-lane preference and the right-lane overtaking ban simultaneously.

3. Asymmetric model

The straightforward implementation of the right-lane overtaking ban of the preceding section
leads to large lane changing frequencies. Furthermore, a stricter formulation of the right-lane
overtaking ban may lead to difficulties with regard to velocity anticipation or to the update
procedure. For the sake of simplicity, however, the consequences of a right-lane overtaking
ban rather than the basic mechanisms are modelled. Vehicles are still allowed to overtake their
predecessor in the left lane but the left lane should be preferred. Therefore, we reduced the
ability to change from the left to the right lane [18, 19] so that vehicles in the left lane change
back to the right lane only if there is a sufficient gap in both the right and left lanes. The lane
change rules are then as follows:

right → left

Incentive criterion: (bn = 0) and (v(t) > d)

Safety criterion: (d
(eff)
pred � v(t)) and (dsucc � vsucc)

5 Note that the lane usage inversion can be traced back to an asymmetric distribution of the density in the lanes but
not to a negative velocity gradient from the left to the right lane which leads to larger flows in the left lane. Different
speed limits for the lanes increase the inversion but are not its reason, since lane usage inversion can also be observed
on highways with speed limits.
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Figure 7. Fundamental diagram of the individual lanes in the asymmetric model.

left → right

Incentive criterion: (bn = 0) and

(thpred > 3.0) and ((th > 6.0) or (v > gap))

Safety criterion: (d
(eff)
pred � v(t)) and (dsucc � vsucc).

The two times th = d/v and thpred = dpred/v give the time a vehicle needs to reach the
position of its predecessor in its own lane and its predecessor on the destination lane. Since
the time headways take the velocity of the vehicles into account, slow vehicles are allowed to
change lane even at small distances6.

With the two parameters thpred and th it is possible to trigger the lane usage inversion. If
the movement of a vehicle is undisturbed (at small densities) it changes the lane if its time
headway to the preceding vehicle in its own and in the destination lane is larger than 6 and 3 s,
respectively. Otherwise, at large densities the condition v > d ensures an incentive to change
to the right lane.

Figure 7 illustrates the asymmetry of the lane changing rules with the fundamental diagram:
at small densities, the flow in the left lane is larger than in the right lane. As a consequence,
the flow breakdown occurs first in the left lane. Once the maximum flow in the left lane is
reached more and more cars swerve into the right lane until the flow is distributed evenly on
both lanes. Therefore, the system breakdown is mainly triggered by a single-lane breakdown
in the left lane [18]. However, the mean velocity in the right lane starts to decrease before the
breakdown in the left lane occurs, so that the velocity is always larger on the left rather than
on the right lane. Thus, the system separates into a fast and a slow lane.

6 Instead of comparing time headways it is possible to use the vehicle’s gap reduced by a constant offset in the
incentive criterion (e.g. v < gap − offset) in order to retard the change from the left to the right lane. Unfortunately,
this has major drawbacks since, for larger densities, this condition is never fulfilled [19].
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Figure 8. Lane usage in the asymmetric model.

The two competing mechanisms of the lane changing rules, namely the right-lane
overtaking ban and the right-lane preference, lead to a lane usage inversion (figure 8). At
small densities the right-lane preference dominates so that most of the vehicles are driving in
the right lane. However, as a consequence of the right-lane overtaking ban, with increasing
density more vehicles avoid driving in the right lane. The position of the inversion point is
mainly controlled by th while the extent of the lane usage inversion is controlled by thpred. With
increasing total density the lane usage inversion decreases (figure 8).

Due to the retarded lane change from left to right the number of lane changes is decreased
significantly compared to the symmetric model. As in the symmetric model, the maximum of
lane changes is reached in the vicinity of the maximum flow. Further increasing the density
the lane change number drops to a plateau value until lane changes are no longer possible at
very large densities (figure 9). In contrast to the symmetric model, the ping-pong changes are
strongly suppressed due to the asymmetric rule set.

Next, we consider an inhomogeneous model with 10% trucks. In contrast to the symmetric
model trucks are now allowed to change from the right to the left lane. In figure 10 the
distribution of the trucks in both lanes is depicted. Although at small densities considerably
more trucks are on the right than on the left lane, the trucks do not congregate completely on
the right lane. Therefore, the flow is dominated by trucks on both lanes even for small densities
and a small fraction of trucks. As a result of the lane usage inversion and a small number of
trucks on the left lane, vehicles can go faster in the right rather than in the left lane. However,
at densities larger than ρmax the maximum velocity of the vehicles are smaller than the mean
velocity so that the trucks are evenly distributed in both lanes.

The stability of the plugs is mainly determined by velocity fluctuations since the distance
between two trucks driving side by side in free flow can only be increased by a repeated
deceleration of one truck in the randomization step of the velocity update. We therefore
distributed the maximum velocity of the cars vmax according to a Gaussian profile with different
variances and a mean v̄max = 20. Despite the possibility that small differences of the maximum
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Figure 9. Number of lane changes in the asymmetric model.

Figure 10. Distribution of trucks in both lanes in the inhomogeneous asymmetric model. Note
that trucks are allowed to change lanes.

velocity of the trucks are now allowed, the plugs still remain very robust. Even different
Gaussian distributions of the maximum velocities of cars and trucks, or special lane changing
rules for trucks, do not decrease the stability of the plugs. Plugs are therefore no artefact of the
discretization but are formed by the dynamics. Because of the asymmetry of the lane changing
rules, once a truck has changed to the left lane, there has to be a large gap in front in the left
and in the right lane to change back. This increases the time trucks are in the left lane and
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Figure 11. Fundamental diagram of the individual lanes in the inhomogeneous asymmetric model.
Note that trucks are not allowed to change lane.

Figure 12. Lane changes in the inhomogeneous asymmetric model. Note that trucks are not
allowed to change lane.

supports the formation of plugs. In contrast to the symmetric model, even one truck in the left
lane is able to dominate the flow of the left lane completely. As long as the truck stays in the
left lane, passing is not possible: due to the right-lane overtaking ban, as in reality, the faster
cars pile up behind the truck waiting for a possibility to pass.

In order to avoid the formation of plugs we reintroduce the lane changing ban for the
trucks, so that the trucks are now lane-stationary in the right lane. As in the symmetric model,
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Figure 13. Lane usage in the inhomogeneous asymmetric model. Note that trucks are not allowed
to change lane.

the flow of the right lane is dominated by trucks only in the vicinity of ρmax (figure 11), which
is a consequence of the increased robustness of the model regarding slow vehicles. As a result
of the moving hindrances in the right lane, the number of lane changes is increased compared
to the homogeneous model (figure 12). Now, lane changes are necessary even at very small
densities to avoid being trapped behind a truck. Therefore, the lane usage inversion is increased
significantly in the vicinity of ρmax (figure 13).

As in the homogeneous model the traffic breakdown is mainly controlled by the capacity
of the left lane (figure 14). At small densities the flow in the left lane is larger than in the right
lane since the density is distributed asymmetrically. Further increasing the density shifts the
excess flow in the right lane up to its capacity. At large densities more vehicles are on the left
than on the right lane because of the lane usage inversion, which results in a larger flow in the
right lane.

4. Local measurements

In the previous sections we focused our analysis on two-lane properties induced by lane
changing manoeuvres such as the number of lane changes, the flow enhancement and the
lane usage inversion. It turned out that it is possible to produce a realistic lane changing
behaviour which can reproduce empirical data by means of a simple asymmetric rule set.
Nevertheless, it is an open question whether the vehicle dynamics of the single-lane model is
modified by the introduction of lane changing rules.

In order to compare the two-lane model with the corresponding single-lane model, we
evaluated the simulation data by a virtual inductive loop, i.e. we measured the speed and the
time headway of the vehicles at a given link of the lattice. The density is calculated via the
relation ρ = J/v, where J and v are the mean flow and mean velocity of cars passing the
detector in a time interval of 1 min. In addition to the aggregated data, the single-vehicle data
of each car passing the detector are also analysed.
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Figure 14. Fundamental diagram of the individual lanes in the asymmetric model. The density
is given as the average density of the individual lanes. Note that trucks are not allowed to change
lane.

A detailed analysis of the locally measured data of the homogeneous model shows no
difference of the two-lane model to the single-lane model on a macroscopic (i.e. data averaged
over an interval of 1 min) as well as on a microscopic (i.e. single-vehicle data) level in the
congested regime. Moreover, there is no difference of the locally measured data between
the two lanes in the congested regime. In contrast, in the free flow regime the time headway
distribution of the left lane shows an increased number of small headways compared to the right
lane. The lane usage inversion at small densities increases the car–car interactions in the left
lane which leads to clusters of cars with small gaps and large velocities. In the inhomogeneous
model the inclusion of disorder dissolves these clusters so that the difference between the time
headway distributions to the single-lane model vanishes again. Moreover, trucks in the right
lane reduce the mean velocity in the free flow regime and shift the velocity–headway curve
to smaller velocities at small distances compared to the left lane. Nevertheless, these results
show that the vehicle dynamics is not influenced by the lane changing rules but by the traffic
state7.

Empirical observations suggest a strong coupling of the lanes in the synchronized state [8].
In order to quantify the interaction of the lanes, we calculated the cross-correlation cc(τ ) of
the time series of measurements of the density, the flow and the velocity in different lanes:

cc(xi, xj ) = 〈xi(t)xj (t + τ)〉 − 〈xi(t)〉〈xj (t + τ)〉√
〈x2

i (t)〉 − 〈xi(t)〉2
√

〈x2
j (t + τ)〉 − 〈xj (t + τ)〉2

. (1)

Here xi denotes either the flow, the density or the velocity in lane i.
In the free flow state the weak interaction of the lanes results in a small correlation of all

quantities (figure 15). Since the flow is mainly controlled by density fluctuations the density
and the flow measurements show the same correlations. In contrast, at larger densities the

7 A detailed analysis of the single-lane model reveals the independence of the vehicle dynamics in the congested
regime, even at the maximum velocity.
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Figure 15. Cross-correlation of the locally measured flow, density and velocity of neighbouring
lanes in the free flow regime (ρ = 6 veh km−1) in the asymmetric model.

Figure 16. Cross-correlation of the local measured flow, density and velocity of neighbouring
lanes in the synchronized state (ρ = 50 veh km−1) in the asymmetric model.

velocity and the flow in both lanes is strongly correlated (cc(xi, xj ) � 0.6 at τ = 0), i.e.
indicating that the system is in the synchronized regime. However, due to the large variance of
the density measurements in the synchronized regime the density in both lanes is not correlated
(figure 16).

Lane changes are responsible for the synchronization of the velocities of different lanes [4].
In the case of a velocity difference between the lanes, vehicles are changing to the faster lanes,
thus decreasing the velocity difference. This leads to a strong coupling of the lanes in the



A realistic two-lane traffic model for highway traffic 3385

Figure 17. Asymmetric model with open boundary conditions. The large input rate of 0.35 of the
on-ramp induces jams in both lanes.

Figure 18. Comparison of the fundamental diagram of the single-lane model with the homogeneous
two-lane models.

congested regime. In particular, in the vicinity of on- and off-ramps cars enter or leave only
the right lane, but both lanes are disturbed at large in- or out-flows. In order to verify this, we
simulated a system with open boundary conditions and generated a jam on the right lane by a
large input of an on-ramp. As a result, the jam spreads to the left lane, so that the time series of
the velocity measurements of both the left and the right lane are highly correlated. Moreover,
the traffic breakdown occurs at the same time (figure 17), leading to a synchronization of the
lanes.
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Figure 19. Travel-time distribution of the asymmetric two-lane model compared with the single-
lane model at a density of 54 veh km−1. The data points were smoothed by a moving average. The
system length is 15 km.

5. Single-lane versus two-lane traffic

A detailed comparison of the single-lane model with the corresponding two-lane model shows
that it is not possible to increase the flow of a two-lane model to more than twice the flow
of a single-lane model by means of an asymmetric lane interaction. In contrast to symmetric
models, the flow of the asymmetric model in the right lane is decreased whereas the flow in
the left lane is increased compared with the single-lane model (figure 18). The right-lane
overtaking ban and the right-lane preference lead to a suboptimal gap usage and, therefore, to
a reduction of the flow on the right lane. As a result, the mean flow per lane is smaller than
the flow of a homogeneous single-lane model.

However, the benefits of the two-lane model become visible if different types of cars with
different maximum velocities are considered. (Note that the trucks are not allowed to change
lane.) Due to the possibility of overtaking, the system is more robust regarding disorder. While
the flow of a single-lane model is dominated already by just one slow car [23,25] (since passing
is not possible), the flow in the right lane of the two-lane model is only decreased in the vicinity
of ρmax compared with the homogeneous model.

Furthermore, the travel time of a vehicle is reduced considerably by the lane interaction.
The travel time is measured as the time a vehicle needs to pass a given fixed link of the lattice
twice. Thus the travel time in the right lane is given by vehicles that passed the measurement
section on the right lane. Here it is not relevant whether the car started in the left or the right
lane and lane changes during the trip through the system are allowed.

Compared to the single-lane model, the width of the travel-time distribution in the
congested regime of the two-lane model is larger (figure 19) but the maximum has moved
to smaller times. On the one hand, vehicles which cannot change lane due to an insufficient
safety gap lead to larger travel times. On the other hand, the possibility of changing the lane
reduces the travel time. Moreover, the asymmetric distribution of the density leads to a smaller
travel time in the right lane than in the left lane Again, the results in the congested regime are
independent on the fraction of trucks since driving with maximum velocity is no longer possible.



A realistic two-lane traffic model for highway traffic 3387

Figure 20. Comparison of the travel-time distributions of the homogeneous and the inhomogeneous
asymmetric model at a density of 14 veh km−1. The system length is 15 km.

In the free flow regime, the inclusion of trucks in the right lane is responsible for a larger
mean travel time compared with the homogeneous two-lane model (figure 20). The trucks in
the right lane enforce clustering so that the travel time of cars trapped behind a truck increases,
which leads to a second small peak at large times in the travel-time distribution. Therefore, the
more trucks there are in the system, the larger is the variance of the travel-time distribution.

6. Conclusion

We have presented an asymmetric two-lane model with a simple local lane changing rule set that
shows the empirically observed lane usage inversion and reproduces the density dependence
of the number of lane changes. In order to observe lane usage inversion it is not sufficient to
implement asymmetry in the model by means of disorder, i.e. using different types of cars.
Moreover, the introduction of the right-lane overtaking ban or the right-lane preference alone
fails to reproduce the lane usage inversion, too. Thus, realistic behaviour is only obtained by
incorporating both a right-lane preference and a right-lane overtaking ban simultaneously into
the model’s rules.

The benefits of the two-lane model compared with the single-lane model become visible
by introducing disorder: there is no flow enhancement of the two-lane model with one type
of car, but the robustness of the flow regarding slow vehicles can be increased significantly by
means of lane interaction. This lane interaction leads to a strong coupling of both lanes in the
synchronized regime, which results in strong correlations of the time series of the velocity.

As a consequence, a jam generated in the right lane by an on-ramp can branch into the
left lane, leading to a congested region in both lanes. In order to improve and optimize the
throughput of the highway it is possible to use ramp metering systems [26–28]. Here, such
systems will help to reduce perturbations of the right lane and thus stabilize the flow even in
the left lane.
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Finally, a detailed analysis of local measurements shows that the car dynamics remains
unchanged by the introduction of the lane changing rules. Therefore, the lane change extension
of the single-lane model can be used for the propagation of traffic state information to all lanes,
e.g. in order to synchronize the lanes, or to trigger distinct traffic states (e.g. in the vicinity of
on- and off-ramps). Moreover, the independence of the velocity update and the lane change
update allows for further improvements of the car dynamics and/or developments of more
sophisticated lane changing rules (e.g. for bottlenecks).
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